first-steps.Rmd
This article demonstrates some of the operations from the first steps tutorial from the pyam package, but from R.
library(pryam)
df <- pyam_data_frame(system.file("extdata", "pyam", "tutorial_data.csv", package = "pryam"))
Printing:
df
#> <class 'pyam.core.IamDataFrame'>
#> Index dimensions:
#> * model : AIM/CGE 2.1, GENeSYS-MOD 1.0, ... WITCH-GLOBIOM 4.4 (8)
#> * scenario : 1.0, CD-LINKS_INDCi, CD-LINKS_NPi, ... Faster Transition Scenario (8)
#> Timeseries data coordinates:
#> region : R5ASIA, R5LAM, R5MAF, R5OECD90+EU, R5REF, R5ROWO, World (7)
#> variable : ... (6)
#> unit : EJ/yr, Mt CO2/yr, °C (3))
#> year : 2010, 2020, 2030, 2040, 2050, 2060, 2070, 2080, ... 2100 (10)
#> Meta indicators:
#> exclude (bool) False (1)
Index values:
df$model
#> [1] "AIM/CGE 2.1" "GENeSYS-MOD 1.0"
#> [3] "IEA World Energy Model 2017" "IMAGE 3.0.1"
#> [5] "MESSAGEix-GLOBIOM 1.0" "POLES CD-LINKS"
#> [7] "REMIND-MAgPIE 1.7-3.0" "WITCH-GLOBIOM 4.4"
df$scenario
#> [1] "1.0" "CD-LINKS_INDCi"
#> [3] "CD-LINKS_NPi" "CD-LINKS_NPi2020_1000"
#> [5] "CD-LINKS_NPi2020_1600" "CD-LINKS_NPi2020_400"
#> [7] "CD-LINKS_NoPolicy" "Faster Transition Scenario"
df$scenario
#> [1] "1.0" "CD-LINKS_INDCi"
#> [3] "CD-LINKS_NPi" "CD-LINKS_NPi2020_1000"
#> [5] "CD-LINKS_NPi2020_1600" "CD-LINKS_NPi2020_400"
#> [7] "CD-LINKS_NoPolicy" "Faster Transition Scenario"
df$region
#> [1] "R5ASIA" "R5LAM" "R5MAF" "R5OECD90+EU" "R5REF"
#> [6] "R5ROWO" "World"
df$variables(include_units = TRUE)
#> variable unit
#> 1 AR5 climate diagnostics|Temperature|Global Mean|MAGICC6|MED °CC
#> 2 Emissions|CO2 Mt CO2/yr
#> 3 Primary Energy EJ/yr
#> 4 Primary Energy|Biomass EJ/yr
#> 5 Primary Energy|Fossil EJ/yr
#> 6 Primary Energy|Non-Biomass Renewables EJ/yr
df$filter(model = "MESSAGE")$scenario
#> list()
df$filter(model = "MESSAGE*")$scenario
#> [1] "CD-LINKS_INDCi" "CD-LINKS_NPi" "CD-LINKS_NPi2020_1000"
#> [4] "CD-LINKS_NPi2020_1600" "CD-LINKS_NPi2020_400" "CD-LINKS_NoPolicy"
df$filter(region = "World", keep = FALSE)$region
#> [1] "R5ASIA" "R5LAM" "R5MAF" "R5OECD90+EU" "R5REF"
#> [6] "R5ROWO"
df$filter(variable='Primary Energy*', level=1)$variable
#> [1] "Primary Energy|Biomass"
#> [2] "Primary Energy|Fossil"
#> [3] "Primary Energy|Non-Biomass Renewables"
df$filter(variable='Primary Energy*', level='1-')$variable
#> [1] "Primary Energy"
#> [2] "Primary Energy|Biomass"
#> [3] "Primary Energy|Fossil"
#> [4] "Primary Energy|Non-Biomass Renewables"